Cart (Loading....) | Create Account
Close category search window

A digitally-controlled, bi-level CMOS LED driver circuit combining PWM dimming and data transmission for visible light networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mirvakili, A. ; Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA ; Joyner, V.

Recent breakthroughs in solid-state lighting technology has opened the door to a myriad of applications using light-emitting diodes for both illumination and optical wireless networking. Low-power CMOS technology enables realization of mixed-mode, system-on-chip driver circuits integrating multiple functions on a single substrate to control LED device performance, luminance, and data modulation for “intelligent” visible light networking. This paper presents a novel LED driver circuit architecture incorporating digitally-controlled analog circuit blocks to deliver concurrent illumination control and serial data transmission. To achieve this goal, a bi-level pulse-width modulation (PWM) driving scheme is applied to enable data transmission during the “OFF” period of the LED drive current. With 3-bit PWM dimming resolution, the driver circuit enables linear luminous intensity control from 5% to 100%. Pseudo-random binary sequences (PRBS) are generated to compare circuit performance for various data modulation formats. The LED driver circuit is simulated in a 0.5 μm CMOS process and exhibits a worst-case power consumption of 100 mW with 33 mA peak PWM current.

Published in:

GLOBECOM Workshops (GC Wkshps), 2010 IEEE

Date of Conference:

6-10 Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.