By Topic

Correlation Between Flux Pinning Properties and Interfacial Defects in {\rm YBa}_{2}{\rm Cu}_{3}{\rm O}_{7-\delta }/{\rm CeO}_{2} Multilayer Thin Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen-Fong Tsai ; Materials Science and Engineering Program, Electrical and Computer Engineering Department, Texas A&M University, College Station, Texas, USA ; Yuanyuan Zhu ; Li Chen ; Haiyan Wang

YBa2Cu3O7-δ (YBCO) thin films doped with either secondary nanoparticles or nanolayers have demonstrated enhanced flux pinning properties in applied magnetic field. One possible reason for the enhanced flux pinning properties is the interfacial defects generated at the heterogeneous interfaces between YBCO and nanoparticles/nanolayers. In this work, we conducted a systematic study to correlate the pinning properties of YBCO thin films with interfacial defect density by introducing CeO2 multilayered structures. Multilayered YBCO thin films with 1-, 2-, and 4- CeO2 interlayers and a pure YBCO reference thin film were prepared by pulsed laser deposition through alternating YBCO and CeO2 targets. A detailed microstructure and superconducting property analysis was conducted by X-ray diffraction (XRD), high resolution cross-sectional transmission electron microscopy (TEM), and physical properties measurement system (PPMS) with vibrating sample magnetometer (VSM). The result showed that introducing CeO2 nanolayers can effectively increase the interfacial defects without degrading the epitaxy quality of YBCO films. We found that an optimum density of interfacial defects in YBCO matrix is needed for the enhanced self-field and in-field performance.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:21 ,  Issue: 3 )