By Topic

Coplanar Waveguides on High-Resistivity Silicon Substrates With Attenuation Constant Lower Than 1 dB/mm for Microwave and Millimeter-Wave Bands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Takehiko Makita ; Oki Electric Industry Co., Ltd., Tokyo, Japan ; Isao Tamai ; Shohei Seki

Coplanar waveguides (CPWs) with extremely low loss have been successfully developed on high-resistivity silicon (HR-Si) substrates as interposers of multichip modules for microwave and millimeter-wave bands. The attenuation constant of these CPWs on HR-Si is less than 1 dB/mm for frequencies up to 100 GHz, which is comparable with that of CPWs on semi-insulating compound semiconductor substrates. Conventional CPW structures show a larger attenuation constant due to the effects of the low-resistivity layer generated at the interface between the insulating layer of SiN and the HR-Si substrate, which has been detected through both experimental investigations and numerical calculations. A CPW structure that suppresses the effects of the low-resistivity layer is presented in this paper. The fabrication process is rather simple and can be smoothly integrated in conventional semiconductor device fabrication processes.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 3 )