Cart (Loading....) | Create Account
Close category search window
 

Using Object Affordances to Improve Object Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Castellini, C. ; LIRA-Lab., Univ. degli Studi di Genova, Genova, Italy ; Tommasi, T. ; Noceti, N. ; Odone, F.
more authors

The problem of object recognition has not yet been solved in its general form. The most successful approach to it so far relies on object models obtained by training a statistical method on visual features obtained from camera images. The images must necessarily come from huge visual datasets, in order to circumvent all problems related to changing illumination, point of view, etc. We hereby propose to also consider, in an object model, a simple model of how a human being would grasp that object (its affordance). This knowledge is represented as a function mapping visual features of an object to the kinematic features of a hand while grasping it. The function is practically enforced via regression on a human grasping database. After describing the database (which is publicly available) and the proposed method, we experimentally evaluate it, showing that a standard object classifier working on both sets of features (visual and motor) has a significantly better recognition rate than that of a visual-only classifier.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:3 ,  Issue: 3 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.