By Topic

Scattering by a chiral cylinder of arbitrary cross section

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kluskens, M.S. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Newman, E.H.

An integral equation and method-of-moments (MM) solution to the problem of scattering by an inhomogeneous chiral cylinder of arbitrary cross section is presented. The volume equivalence theorem for chiral media is developed and used to formulate a set of coupled integral equations for the electric and magnetic volume polarization currents representing the chiral cylinder. These coupled integral equations are solved using a standard pulse basis and point-matching MM solution. Numerical results, including echo width and internal fields, are presented for the scattering by chiral slabs and circular cylinders. These results are compared to exact solutions when available

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:38 ,  Issue: 9 )