Cart (Loading....) | Create Account
Close category search window
 

Application of self-assembled monolayer (SAM) in low temperature bump-less Cu-Cu bonding for advanced 3D IC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chuan Seng Tan ; Nanyang Technol. Univ., Singapore, Singapore

Self assembled monolayer (SAM) of alkane-thiol of 6-carbon (1-hexanethiol, C6) chain length is applied on Cu surface (deposited on Si substrate) and examined carefully. Firstly, the ability of SAM adsorption onto Cu surface is confirmed by the sharp rise of water contact angle (CA) on the surface. Next, the thermal stability of SAM when it is stored in different environments is studied. The CA decreases when it is stored in clean room ambient due to partial desorption of the SAM. The desorption behavior of SAM is found to be reversely proportional to the immersion time in SAM solution, whereby longer immersion time shows less desorption. SAM desorption can slowed down significantly if samples are kept at lower temperature (~4°C). Substantial desorption of SAM is observed when the samples are annealed above a critical temperature when SAM desorb rapidly from the Cu surface. Surface analysis confirms that Cu surface protected by SAM contains less oxygen. Finally, bonding experiments are performed to validate effectiveness of SAM in tailoring the Cu surface for bonding enhancement at low temperature. Results show that uniform Cu-Cu bond with higher shear strength is obtained as a result of SAM passivation.

Published in:

Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International

Date of Conference:

20-22 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.