Cart (Loading....) | Create Account
Close category search window
 

Blue Gene/Q resource management architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Budnik, T. ; Syst. & Technol. Group, IBM, Rochester, MN, USA ; Knudson, B. ; Megerian, M. ; Miller, S.
more authors

As supercomputers scale to a million processor cores and beyond, the underlying resource management architecture needs to provide a flexible mechanism to manage the wide variety of workloads executing on the machine. In this paper we describe the novel approach of the Blue Gene/Q (BG/Q) supercomputer in addressing these workload requirements by providing resource management services that support both the high performance computing (HPC) and high-throughput computing (HTC) paradigms. We explore how the resource management implementations of the prior generation Blue Gene (BG/L and BG/P) systems evolved and led us down the path to developing services on BG/Q that focus on scalability, flexibility and efficiency. Also provided is an overview of the main components comprising the BG/Q resource management architecture and how they interact with one another. Introduced in this paper are BG/Q concepts for partitioning I/O and compute resources to provide I/O resiliency while at the same time providing for faster block (partition) boot times. New features, such as the ability to run a mix of HTC and HPC workloads on the same block are explained, and the advantages of this type of environment are examined. Similar to how Many-task computing (MTC) [1] aims to combine elements of HTC and HPC, the focus of BG/Q has been to unify the two models in a flexible manner where hybrid workloads having both HTC and HPC characteristics are managed simultaneously.

Published in:

Many-Task Computing on Grids and Supercomputers (MTAGS), 2010 IEEE Workshop on

Date of Conference:

15-15 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.