By Topic

Improving Many-Task computing in scientific workflows using P2P techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dias, J. ; Fed. Univ. of Rio de Janeiro, Rio de Janeiro, Brazil ; Ogasawara, E. ; de Oliveira, D. ; Pacitti, E.
more authors

Large-scale scientific experiments are usually supported by scientific workflows that may demand high performance computing infrastructure. Within a given experiment, the same workflow may be explored with different sets of parameters. However, the parallelization of the workflow instances is hard to be accomplished mainly due to the heterogeneity of its activities. Many-Task computing paradigm seems to be a candidate approach to support workflow activity parallelism. However, scheduling a huge amount of workflow activities on large clusters may be susceptible to resource failures and overloading. In this paper, we propose Heracles, an approach to apply consolidated P2P techniques to improve Many-Task computing of workflow activities on large clusters. We present a fault tolerance mechanism, a dynamic resource management and a hierarchical organization of computing nodes to handle workflow instances execution properly. We have evaluated Heracles by executing experimental analysis regarding the benefits of P2P techniques on the workflow execution time.

Published in:

Many-Task Computing on Grids and Supercomputers (MTAGS), 2010 IEEE Workshop on

Date of Conference:

15-15 Nov. 2010