By Topic

An Analytic Expression of Inductance Gradient for Rail-Type Electromagnetic Launcher

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jianxin Nie ; State Key Lab. of Explosion Sci. & Technol., Beijing Inst. of Technol., Beijing, China ; Jingjing Han ; Qingjie Jiao ; Jun Li
more authors

The rail-type electromagnetic launcher (EML) has good development and applied prospects for military and civilian dual purpose. The inductance gradient is an important parameter to design the EML structure and evaluate the system performance. Based on the Biot-Savart law and current skin-effect behavior, we derive an analytic formula to predict the EML inductance gradient, which expands Batteh's formula by introducing rail thickness w and skin depth δ. Our expression is more accurate because the geometrical parameters of both rails and armature are considered in this paper. We investigate the inductance gradient change as a function of the ratio of bore width to height s/ha, rail thickness w, and two-rail interval s. Finally, our results at different scales are compared with those of other formulas of the inductance gradient. This paper could be used directly to design and optimize the rail-type EML.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 3 )