By Topic

Control and Design of a Modular Multilevel Cascade BTB System Using Bidirectional Isolated DC/DC Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hirofumi Akagi ; Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan ; Ryohei Kitada

This paper discusses the control and design of the 6.6-kV back-to-back (BTB) system combining bidirectional isolated dc/dc converters and modular multilevel cascade pulsewidth modulation (PWM) converters. The system consists of multiple converter cells connected in cascade per phase at both front ends. Each converter cell consists of a bidirectional isolated medium-frequency dc/dc converter and two voltage-source H-bridge (single-phase full-bridge) PWM converters. Extremely low-voltage steps bring a significant reduction in harmonics and electromagnetic interference emissions to the BTB system. This paper designs, constructs, and tests a single-phase downscaled BTB system rated at 120 V and 3.3 kW to verify the viability and effectiveness, leading to the actual system.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 9 )