By Topic

Using a Choice Function for Guiding Enumeration in Constraint Solving

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Crawford, B. ; Pontificia Univ. Catolica de Valparaiso, Valparaiso, Chile ; Castro, C. ; Monfroy, E.

In Constraint Programming, selection of a variable and a value of its domain enumeration strategies are crucial for resolution performances. We propose to use a Choice Function for guiding enumeration: we exploit search process features to dynamically adapt a Constraint Programming solver in order to more efficiently solve Constraint Satisfaction Problems. The Choice Function provides guidance to the solver by indicating which enumeration strategy should be applied next based upon the information of the search process, it should be captured through some indicators. The Choice Function is defined as a weighted sum of indicators expressing the recent improvement produced by the enumeration strategy had been called. The weights are determined by a Genetic Algorithm in a multilevel approach. We report results where our combination of strategies outperforms the use of individual strategies.

Published in:

Artificial Intelligence (MICAI), 2010 Ninth Mexican International Conference on

Date of Conference:

8-13 Nov. 2010