Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Three High Performance Architectures in the Parallel APMC Boat

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hamidouche, K. ; LRI, Univ. Paris-Sud, Orsay, France ; Borghi, A. ; Esterie, P. ; Falcou, J.
more authors

Approximate probabilistic model checking, and more generally sampling based model checking methods, proceed by drawing independent executions of a given model and by checking a temporal formula on these executions. In theory, these methods can be easily massively parallelized, but in practice one has to consider, for this purpose, important aspects such as the communication paradigm, the physical architecture of the machine, etc. Moreover, being able to develop multiple implementations of this algorithm on architectures as different as a cluster or many-cores requires various levels of expertise that may be problematic to gather. In this paper we propose to investigate the runtime behavior of approximate probabilistic model checking on various state of the art parallel machines - clusters, SMP, hybrid SMP clusters and the Cell processor - using a high-level parallel programming tool based on the Bulk Synchronous Parallelism paradigm to quickly instantiate model checking problems over a large variety of parallel architectures. Our conclusion assesses the relative efficiency of these architectures with respect to the algorithm classes and promotes guidelines for further work on parallel APMC implementation.

Published in:

Parallel and Distributed Methods in Verification, 2010 Ninth International Workshop on, and High Performance Computational Systems Biology, Second International Workshop on

Date of Conference:

Sept. 30 2010-Oct. 1 2010