By Topic

Effective permittivity of and scattering from wet snow and ice droplets at weather radar wavelengths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Wolf, David A. ; Dept. of Electr. Eng., Tech. Univ. of Delft, Netherlands ; Russchenberg, H.W.J. ; Ligthart, L.P.

In this parametric study, wet snow and ice droplets are modeled as sparse collections of Rayleigh scatterers (size small compared to wavelength) consisting either of ice or of composite mixtures of air and ice in water. An effective permittivity is calculated using various extended Maxwell-Garnett-type models to account for variations in shape and orientation of the constituents. The backscatter radar cross section is calculated as an incoherent sum of individual particle cross sections, and for various distributions of shape, size, and orientation. The results indicate a dependence of the radar cross section on the polarizations of the incident and reflected fields. This dependence is shown in the differential reflectivity, defined in terms of the ratio of the backscatter cross sections due to two mutually orthogonal linearly polarized incident electric fields

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:38 ,  Issue: 9 )