By Topic

Impact of virtual machine granularity on cloud computing workloads performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Wang ; Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590, USA ; Wei Huang ; Carlos A. Varela

This paper studies the impact of VM granularity on workload performance in cloud computing environments. We use HPL as a representative tightly coupled computational workload and a web server providing content to customers as a representative loosely coupled network intensive workload. The performance evaluation demonstrates VM granularity has a significant impact on the performance of the computational workload. On an 8-CPU machine, the performance obtained from utilizing 8VMs is more than 4 times higher than that given by 4 or 16 VMs for HPL of problem size 4096; whereas on two machines with a total of 12 CPUs 24 VMs gives the best performance for HPL of problem sizes from 256 to 1024. Our results also indicate that the effect of VM granularity on the performance of the web system is not critical. The largest standard deviation of the transaction rates obtained from varying VM granularity is merely 2.89 with a mean value of 21.34. These observations suggest that VM malleability strategies where VM granularity is changed dynamically, can be used to improve the performance of tightly coupled computational workloads, whereas VM consolidation for energy savings can be more effectively applied to loosely coupled network intensive workloads.

Published in:

2010 11th IEEE/ACM International Conference on Grid Computing

Date of Conference:

25-28 Oct. 2010