By Topic

Japanese phonetic feature extraction for automatic speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Banik, M. ; Dept. of CSE, Ahsanullah Univ. of Sci. & Technol., Dhaka, Bangladesh ; Eity, Q.N. ; Lisa, N.J. ; Hassan, F.
more authors

This paper presents a method for extracting distinctive phonetic features (DPFs) for automatic speech recognition (ASR). The method comprises three stages: i) a acoustic feature extractor, ii) a multilayer neural network (MLN) and iii) a hidden Markov model (HMM) based classifier. At first stage, acoustic features, local features (LFs), are extracted from input speech. On the other stage, MLN generates a 45-dimentional DPF vector from the LFs of 75- dimentions. Finally, these 45-dimentional DPF vector is inserted into an HMM-based classifier to obtain phoneme strings. From the experiments on Japanese Newspaper Article Sentences (JNAS), it is observed that the proposed DPF extractor provides a higher phoneme correct rate and accuracy with fewer mixture components in the HMMs compared to the method based on mel frequency cepstral coefficients (MFCCs). Moreover, a higher correct rate for each phonetic feature is obtained using the proposed method.

Published in:

Signal and Image Processing (ICSIP), 2010 International Conference on

Date of Conference:

15-17 Dec. 2010