By Topic

An Insight Into the ESD Behavior of the Nanometer-Scale Drain-Extended NMOS Device—Part I: Turn-On Behavior of the Parasitic Bipolar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chatterjee, A. ; Dept. of Electr. Eng., Univ. of California, Santa Barbara, CA, USA ; Shrivastava, M. ; Gossner, H. ; Pendharkar, S.
more authors

A second-breakdown phenomenon (It2) in a drain-extended n-type metal-oxide-semiconductor (DENMOS) is associated with complex triggering of a parasitic bipolar transistor. Full comprehension of the problem requires 3-D modeling; however, there is even deficiency in the understanding of the phenomenon occurring in the 2-D cross-sectional plane. We present experiments and models to understand the physics of bipolar turn-on and its impact on the onset of space-charge modulation in a DENMOS device. We present a detailed analysis of the current paths involved during the bipolar turn-on. We show that a strong snapback is triggered due to coupling of the parasitic bipolar turn-on in a deeper region of the p-body and avalanche injection at the drain junction. Furthermore, we show that the ballast resistor formed in the drain region due to current crowding of electrons under high-current conditions can be modeled through a simplified 1-D analysis of the n+/n- resistive structure.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 2 )