Cart (Loading....) | Create Account
Close category search window

Optimal drivetrain component sizing for a Plug-in Hybrid Electric transit bus using Multi-Objective Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Desai, C. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC, Canada ; Berthold, F. ; Williamson, S.S.

Plug-in Hybrid Electric Vehicles (PHEVs) can significantly reduce petroleum consumption and the only difference from hybrid electric vehicles (HEVs) is the ability of PHEVs to use off-board electricity generation to recharge their energy storage system. The fuel economy of PHEV is highly dependent on All-Electric-Range (AER), drivetrain component size and control strategy parameter. In this study we consider PHEV version of parallel hybrid NOVA transit bus model developed with the Powertrain System Analysis Toolkit (PSAT). A genetic based derivative free algorithm called Multi-Objective Genetic Algorithm (MOGA) is used to optimize conflicting drivetrain and control strategy parameters. The AER, fuel economy, emissions and main performance constraints of the PHEVs will be compared for the initial design and final optimal design.

Published in:

Electric Power and Energy Conference (EPEC), 2010 IEEE

Date of Conference:

25-27 Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.