By Topic

Fault Current Limitation by a Transformer Type FCL Based on the Second Generation HTS Wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fleishman, L.S. ; Krzhizhanovsky Power Eng. Inst., Moscow, Russia ; Volkov, E.P. ; Malginov, V.A. ; Malginov, A.V.
more authors

A transformer type superconducting fault current limiter (FCL) for electric power grids was developed utilizing a nonlinear resistor made of the second generation HTS wire. Using of the second generation HTS wire instead of the first one was found to reduce by an order the required amount of superconducting materials. Fault current limiting action and transients in an electric circuit with the prototype FCL have been studied. The effective limitation of peak and steady state fault current was demonstrated using the FCL. The physical basis of the FCL operation was investigated by studying a superconducting-to-normal transition in the second generation HTS wires.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )