By Topic

Assessment of MODIS Thermal Emissive Band On-Orbit Calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tiejun Chang ; Sigma Space Corp., Lanham, MD, USA ; Xiaoxiong Xiong

Sixteen Moderate Resolution Imaging Spectroradiometer thermal emissive bands (TEBs) cover the wavelength from 3.75 to 14.24 μm. TEB calibration uses data collected from the detector responses to the onboard blackbody (BB) and space view. The BB was designed to operate either at a constant temperature for detector linear gain calibration or at temperatures varying from ambient (~270 K) to 315 K for on-orbit characterization of nonlinear coefficients. In this paper, we assess TEB on-orbit calibration performance in two aspects: One is to review the calibration trending on the orbital, daily, and multiyear timescales, and the other is to analyze the on-orbit calibration radiance uncertainty and its impact on the calibration. The calibration trending confirms the detector response dependence on the instrument temperature. The temperature trending and prelaunch characterization provide the basis for determining the calibration radiance source temperature range and uncertainties. An analytical approach was used to assess the impacts of onboard radiance uncertainties. The BB emission uncertainty, resulting from the temperature measurement error and emissivity uncertainty, causes a calibration uncertainty up to 0.3%, a value decreasing with the band wavelength. The BB nonblackness effect is analyzed and found to be insignificant. For the band with the lowest BB emissivity, the nonblackness affects the calibration radiance by less than 0.08%. The cavity emission uncertainty and the scan-mirror emission uncertainty both cause a less than 0.1% calibration uncertainty. The analysis of the nonlinear calibration coefficient uncertainty shows that its effect on the low Earth-view brightness-temperature range varies by band and is generally insignificant.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 6 )