Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Compensation of symmetric and asymmetric hysteresis nonlinearities in smart actuators with a generalized Prandtl-Ishlinskii presentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Janaideh, M.A. ; Dept. of Mechatron. Eng., Univ. of Jordan, Amman, Jordan ; Chun-Yi Su ; Rakheja, S.

Smart actuators employed in micropositioning are known to exhibit strong saturated hysteresis nonlinearities, which may be asymmetric and could adversely affect the positioning accuracy. In this paper, the analytical inverse of a generalized Prandtl-Ishlinskii model is formulated to compensate for hysteresis nonlinearities of smart actuators. The inverse of the generalized model is formulated using the inverse of the classical model together with those of the envelope functions of the generalized play operator. The effectiveness of the inverse of the generalized model in compensating for the symmetric and asymmetric saturated hysteresis effects is subsequently investigated through simulations for a magnetostrictive and a SMA actuators and through preliminary experiments performed on a piezo micropositioning stage. The simulation results suggest that the inverse of the generalized Prandtl-Ishlinskii model can be conveniently applied as a feedforward compensator to effectively mitigate the effects of symmetric as well as asymmetric saturated hysteresis in smart actuators.

Published in:

Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on

Date of Conference:

6-9 July 2010