By Topic

Minimum Cost Mirror Sites Using Network Coding: Replication versus Coding at the Source Nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shurui Huang ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Ramamoorthy, A. ; Medard, M.

Content distribution over networks is often achieved by using mirror sites that hold copies of files or portions thereof to avoid congestion and delay issues arising from excessive demands to a single location. Accordingly, there are distributed storage solutions that divide the file into pieces and place copies of the pieces (replication) or coded versions of the pieces (coding) at multiple source nodes. We consider a network which uses network coding for multicasting the file. There is a set of source nodes that contains either subsets or coded versions of the pieces of the file. The cost of a given storage solution is defined as the sum of the storage cost and the cost of the flows required to support the multicast. Our interest is in finding the storage capacities and flows at minimum combined cost. We formulate the corresponding optimization problems by using the theory of information measures. In particular, we show that when there are two source nodes, there is no loss in considering subset sources. For three source nodes, we derive a tight upper bound on the cost gap between the coded and uncoded cases. We also present algorithms for determining the content of the source nodes.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 2 )