By Topic

LP Decoding of Regular LDPC Codes in Memoryless Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Halabi, N. ; Sch. of Electr. Eng., Tel-Aviv Univ., Tel-Aviv, Israel ; Even, G.

We study error bounds for linear programming decoding of regular low-density parity-check (LDPC) codes. For memoryless binary-input output-symmetric channels, we prove bounds on the word error probability that are inverse doubly exponential in the girth of the factor graph. For memoryless binary-input AWGN channel, we prove lower bounds on the threshold for regular LDPC codes whose factor graphs have logarithmic girth under LP-decoding. Specifically, we prove a lower bound of σ = 0.735 (upper bound of [(Eb)/(N0)]=2.67 dB) on the threshold of (3, 6)-regular LDPC codes whose factor graphs have logarithmic girth. Our proof is an extension of a recent paper of Arora, Daskalakis, and Steurer [STOC 2009] who presented a novel probabilistic analysis of LP decoding over a binary symmetric channel. Their analysis is based on the primal LP representation and has an explicit connection to message passing algorithms. We extend this analysis to any MBIOS channel.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 2 )