By Topic

Classifier and Cluster Ensembles for Mining Concept Drifting Data Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Peng Zhang ; Inst. of Comput. Technol., Chinese Acad. of Sci., Beijing, China ; Xingquan Zhu ; Jianlong Tan ; Li Guo

Ensemble learning is a commonly used tool for building prediction models from data streams, due to its intrinsic merits of handling large volumes stream data. Despite of its extraordinary successes in stream data mining, existing ensemble models, in stream data environments, mainly fall into the ensemble classifiers category, without realizing that building classifiers requires labor intensive labeling process, and it is often the case that we may have a small number of labeled samples to train a few classifiers, but a large number of unlabeled samples are available to build clusters from data streams. Accordingly, in this paper, we propose a new ensemble model which combines both classifiers and clusters together for mining data streams. We argue that the main challenges of this new ensemble model include (1) clusters formulated from data streams only carry cluster IDs, with no genuine class label information, and (2) concept drifting underlying data streams makes it even harder to combine clusters and classifiers into one ensemble framework. To handle challenge (1), we present a label propagation method to infer each cluster's class label by making full use of both class label information from classifiers, and internal structure information from clusters. To handle challenge (2), we present a new weighting schema to weight all base models according to their consistencies with the up-to-date base model. As a result, all classifiers and clusters can be combined together, through a weighted average mechanism, for prediction. Experiments on real-world data streams demonstrate that our method outperforms simple classifier ensemble and cluster ensemble for stream data mining.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010