Cart (Loading....) | Create Account
Close category search window
 

Recommending Social Events from Mobile Phone Location Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A city offers thousands of social events a day, and it is difficult for dwellers to make choices. The combination of mobile phones and recommender systems can change the way one deals with such abundance. Mobile phones with positioning technology are now widely available, making it easy for people to broadcast their whereabouts, recommender systems can now identify patterns in people's movements in order to, for example, recommend events. To do so, the system relies on having mobile users who share their attendance at a large number of social events: cold-start users, who have no location history, cannot receive recommendations. We set out to address the mobile cold-start problem by answering the following research question: how can social events be recommended to a cold-start user based only on his home location? To answer this question, we carry out a study of the relationship between preferences for social events and geography, the first of its kind in a large metropolitan area. We sample location estimations of one million mobile phone users in Greater Boston, combine the sample with social events in the same area, and infer the social events attended by 2,519 residents. Upon this data, we test a variety of algorithms for recommending social events. We find that the most effective algorithm recommends events that are popular among residents of an area. The least effective, instead, recommends events that are geographically close to the area. This last result has interesting implications for location-based services that emphasize recommending nearby events.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.