By Topic

Learning Collaborative Filtering and Its Application to People to People Recommendation in Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiongcai Cai ; Sch. of Comput. Sci. & Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Bain, M. ; Krzywicki, A. ; Wobcke, W.
more authors

Predicting people who other people may like has recently become an important task in many online social networks. Traditional collaborative filtering (CF) approaches are popular in recommender systems to effectively predict user preferences for items. One major problem in CF is computing similarity between users or items. Traditional CF methods often use heuristic methods to combine the ratings given to an item by similar users, which may not reflect the characteristics of the active user and can give unsatisfactory performance. In contrast to heuristic approaches we have developed CollabNet, a novel algorithm that uses gradient descent to learn the relative contributions of similar users or items to the ranking of recommendations produced by a recommender system, using weights to represent the contributions of similar users for each active user. We have applied CollabNet to the challenging problem of people to people recommendation in social networks, where people have a dual role as both "users" and "items", e.g., both initiating and receiving communications, to recommend other users to a given user, based on user similarity in terms of both taste (whom they like) and attractiveness (who likes them). Evaluation of CollabNet recommendations on datasets from a commercial online social network shows improved performance over standard CF.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010