Cart (Loading....) | Create Account
Close category search window
 

Viral Marketing for Multiple Products

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Datta, S. ; Bell Labs. Res., Bangalore, India ; Majumder, A. ; Shrivastava, N.

Viral Marketing, the idea of exploiting social interactions of users to propagate awareness for products, has gained considerable focus in recent years. One of the key issues in this area is to select the best seeds that maximize the influence propagated in the social network. In this paper, we define the seed selection problem (called t-Influence Maximization, or t-IM) for multiple products. Specifically, given the social network and t products along with their seed requirements, we want to select seeds for each product that maximize the overall influence. As the seeds are typically sent promotional messages, to avoid spamming users, we put a hard constraint on the number of products for which any single user can be selected as a seed. In this paper, we design two efficient techniques for the t-IM problem, called Greedy and FairGreedy. The Greedy algorithm uses simple greedy hill climbing, but still results in a 1/3-approximation to the optimum. Our second technique, FairGreedy, allocates seeds with not only high overall influence (close to Greedy in practice), but also ensures fairness across the influence of different products. We also design efficient heuristics for estimating the influence of the selected seeds, that are crucial for running the seed selection on large social network graphs. Finally, using extensive simulations on real-life social graphs, we show the effectiveness and scalability of our techniques compared to existing and naive strategies.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.