Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Bayesian Maximum Margin Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo Dai ; Inst. of Autom., Chinese Acad. of Sci., Beijing, China ; Baogang Hu ; Gang Niu

Most well-known discriminative clustering models, such as spectral clustering (SC) and maximum margin clustering (MMC), are non-Bayesian. Moreover, they merely considered to embed domain-dependent prior knowledge into data-specific kernels, while other forms of prior knowledge were seldom considered in these models. In this paper, we propose a Bayesian maximum margin clustering model (BMMC) based on the low-density separation assumption, which unifies the merits of both Bayesian and discriminative approaches. In addition to stating prior distribution on functions explicitly as traditional Gaussian processes, special prior knowledge can be embedded into BMMC implicitly via the Universum set easily. Furthermore, it is much easier to solve a BMMC than an MMC since the integer variables in the optimization are eliminated. Experimental results show that the BMMC achieves comparable or even better performance than state-of-the-art clustering methods and solving BMMC is more efficiently.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010