By Topic

iSAX 2.0: Indexing and Mining One Billion Time Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Camerra, A. ; Univ. of Trento, Trento, Italy ; Palpanas, T. ; Shieh, J. ; Keogh, E.

There is an increasingly pressing need, by several applications in diverse domains, for developing techniques able to index and mine very large collections of time series. Examples of such applications come from astronomy, biology, the web, and other domains. It is not unusual for these applications to involve numbers of time series in the order of hundreds of millions to billions. However, all relevant techniques that have been proposed in the literature so far have not considered any data collections much larger than one-million time series. In this paper, we describe iSAX 2.0, a data structure designed for indexing and mining truly massive collections of time series. We show that the main bottleneck in mining such massive datasets is the time taken to build the index, and we thus introduce a novel bulk loading mechanism, the first of this kind specifically tailored to a time series index. We show how our method allows mining on datasets that would otherwise be completely untenable, including the first published experiments to index one billion time series, and experiments in mining massive data from domains as diverse as entomology, DNA and web-scale image collections.

Published in:

Data Mining (ICDM), 2010 IEEE 10th International Conference on

Date of Conference:

13-17 Dec. 2010