By Topic

Sparse Representations of Image via Overcomplete Dictionary Learned by Adaptive Non-orthogonal Sparsifying Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zunyi Tang ; Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan ; Zuyuan Yang ; Shuxue Ding

How to learn an over complete dictionary for sparse representations of image is an important topic in machine learning, sparse coding, blind source separation, etc. The so-called K-singular value decomposition (K-SVD) method [3] is powerful for this purpose, however, it is too time-consuming to apply. Recently, an adaptive orthogonal sparsifying transform (AOST) method has been developed to learn the dictionary that is faster. However, the corresponding coefficient matrix may not be as sparse as that of K-SVD. For solving this problem, in this paper, a non-orthogonal iterative match method is proposed to learn the dictionary. By using the approach of sequentially extracting columns of the stacked image blocks, the non-orthogonal atoms of the dictionary are learned adaptively, and the resultant coefficient matrix is sparser. Experiment results show that the proposed method can yield effective dictionaries and the resulting image representation is sparser than AOST.

Published in:

Intelligent Networks and Intelligent Systems (ICINIS), 2010 3rd International Conference on

Date of Conference:

1-3 Nov. 2010