By Topic

Feature Extraction for Online Farsi Characters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghods, V. ; Dept. of Electr. Eng., Islamic Azad Univ., Semnan, Iran ; Kabir, E.

This paper demonstrates the effectiveness of proper and efficient features for classifying online Farsi characters. We use these features to classify the main body of Farsi letters to nine groups. We implemented our method on the main bodies of 4000 isolated letters from "TMU dataset". Correct recognition rates of 99% and 94% were achieved for training and test sets respectively.

Published in:

Frontiers in Handwriting Recognition (ICFHR), 2010 International Conference on

Date of Conference:

16-18 Nov. 2010