Cart (Loading....) | Create Account
Close category search window
 

Efficient Transcript Mapping to Ease the Creation of Document Image Segmentation Ground Truth with Text-Image Alignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stamatopoulos, N. ; Comput. Intell. Lab., Nat. Center for Sci. Res. Demokritos, Athens, Greece ; Louloudis, G. ; Gatos, B.

One of the major issues in document image processing is the efficient creation of ground truth in order to be used for training and evaluation purposes. Since a large number of tools have to be trained and evaluated in realistic circumstances, we need to have a quick and low cost way to create the corresponding ground truth. Moreover, the specific need for having the correct text correlated with the corresponding image area in text line and word level makes the process of ground truth creation a difficult, tedious and costly task. In this paper, we introduce an efficient transcript mapping technique to ease the construction of document image segmentation ground truth that includes text-image alignment. The proposed text line transcript mapping technique is based on Hough transform that is guided by the number of the text lines. Concerning the word segmentation ground truth, a gap classification technique constrained by the number of the words is used. Experimental results prove that using the proposed technique for handwritten documents, the percentage of time saved for ground truth creation and text-image alignment is more than 90%.

Published in:

Frontiers in Handwriting Recognition (ICFHR), 2010 International Conference on

Date of Conference:

16-18 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.