By Topic

A Framework for Emotion Mining from Text in Online Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohamed Yassine ; Dept. of Electr. & Comput. Eng., American Univ. of Beirut, Beirut, Lebanon ; Hazem Hajj

Online Social Networks are so popular nowadays that they are a major component of an individual's social interaction. They are also emotionally-rich environments where close friends share their emotions, feelings and thoughts. In this paper, a new framework is proposed for characterizing emotional interactions in social networks, and then using these characteristics to distinguish friends from acquaintances. The goal is to extract the emotional content of texts in online social networks. The interest is in whether the text is an expression of the writer's emotions or not. For this purpose, text mining techniques are performed on comments retrieved from a social network. The framework includes a model for data collection, database schemas, data processing and data mining steps. The informal language of online social networks is a main point to consider before performing any text mining techniques. This is why the framework includes the development of special lexicons. In general, the paper presents a new perspective for studying friendship relations and emotions' expression in online social networks where it deals with the nature of these sites and the nature of the language used. It considers Lebanese Face book users as a case study. The technique adopted is unsupervised, it mainly uses the k-means clustering algorithm. Experiments show high accuracy for the model in both determining subjectivity of texts and predicting friendship.

Published in:

2010 IEEE International Conference on Data Mining Workshops

Date of Conference:

13-13 Dec. 2010