By Topic

Sequence Alignment Based Analysis of Player Behavior in Massively Multiplayer Online Role-Playing Games (MMORPGs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyong Jin Shim ; Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Srivastava, J.

This study proposes a sequence alignment-based behavior analysis framework (SABAF) developed for predicting inactive game players that either leave the game permanently or stop playing the game for a long period of time. Sequence similarity scores and derived statistics form profile databases of inactive players and active players from the past. SABAF uses global and local sequence alignment algorithms and a unique scoring scheme to measure similarity between activity sequences. SABAF is tested on the game player activity data of Ever Quest II, a popular massively multiplayer online role-playing game developed by Sony Online Entertainment. SABAF consists of the following key components: 1) sequence alignment-based player profile databases, 2) feature selection schemes and prediction model building, and 3) decision support model for determining inactive players.

Published in:

Data Mining Workshops (ICDMW), 2010 IEEE International Conference on

Date of Conference:

13-13 Dec. 2010