By Topic

Smooth Kernel Density Estimate for Multiple View Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruttle, J. ; Sch. of Comput. Sci. & Stat., Trinity Coll. Dublin, Dublin, Ireland ; Manzke, M. ; Dahyot, R.

We present a statistical framework to merge the information from silhouettes segmented in multiple view images to infer the 3D shape of an object. The approach is generalising the robust but discrete modelling of the visual hull by using the concept of averaged likelihoods. One resulting advantage of our framework is that the objective function is continuous and therefore an iterative gradient ascent algorithm can be defined to efficiently search the space. Moreover this results in a method which is less memory demanding and one that is very suitable to a parallel processing architecture. Experimental results shows that this approach is efficient for getting a robust initial guess to the 3D shape of an object in view.

Published in:

Visual Media Production (CVMP), 2010 Conference on

Date of Conference:

17-18 Nov. 2010