By Topic

Study of Switching Characteristics of Static Induction Thyristor for Pulsed Power Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bongseong Kim ; Dept. of Electr. Eng., Hanyang Univ., Seoul, South Korea ; Kwang-Cheol Ko ; Hotta, E.

It is difficult to design a standard gate driver for optimal switching control of a static induction thyristor (SI-Thy) because of its unique internal structure and the direct commutation switching characteristic between the gate and cathode terminals during the transient turn-on and turn-off switching phases. Therefore, it is important to develop a simple and effective gate driver for achieving optimal fast turn-on and stable switching operations in an SI-Thy under hard-switching conditions. To achieve faster turn-on switching time with shorter gate delay time, impedance matching between the SI-Thy and the turn-on driving circuit component in the gate driver can be realized with additional circuit modification through this paper. To ensure higher stabilities in the turn-off switching phase, forced commutation techniques and additional auxiliary circuits in the gate driver have been devised to suppress the latchup and to eliminate potential ringing possibility. We have demonstrated that our designed and tested gate driver for realizing optimal switching characteristics of an SI-Thy is effective, particularly in the gate driving circuits for various pulsed-power switching applications.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 3 )