By Topic

Xampling: Analog to digital at sub-Nyquist rates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mishali, M. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Eldar, Y.C. ; Dounaevsky, O. ; Shoshan, E.

The authors present a sub-Nyquist analog-to-digital converter of wideband inputs. The circuit realises the recently proposed modulated wideband converter, which is a flexible platform for sampling signals according to their actual bandwidth occupation. The theoretical work enables, for example, a sub-Nyquist wideband communication receiver, which has no prior information on the transmitter carrier positions. The present design supports input signals with 2 GHz Nyquist rate and 120 MHz spectrum occupancy, with arbitrary transmission frequencies. The sampling rate is as low as 280 MHz. To the best of the authors knowledge, this is the first reported hardware that performs sub-Nyquist sampling and reconstruction of wideband signals. The authors describe the various circuit design considerations, with an emphasis on the non-ordinary challenges the converter introduces: mixing a signal with a multiple set of sinusoids, rather than a single local oscillator, and generation of highly transient periodic waveforms, with transient intervals on the order of the Nyquist rate. Hardware experiments validate the design and demonstrate sub-Nyquist sampling and signal reconstruction.

Published in:

Circuits, Devices & Systems, IET  (Volume:5 ,  Issue: 1 )