By Topic

Expression-Invariant 3D Face Recognition Using Patched Geodesic Texture Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Farshid Hajati ; Fac. of Electr. Eng., Amirkabir Univ. of Technol., Tehran, Iran ; Abolghasem A. Raie ; Yongsheng Gao

Numerous methods have been proposed for the expression-invariant 3D face recognition, but a little attention is given to the local-based representation for the texture of the 3D images. In this paper, we propose an expression-invariant 3D face recognition approach based on the locally extracted moments of the texture when only one exemplar per person is available. We use a geodesic texture transform accompanied by Pseudo Zernike Moments to extract local feature vectors from the texture of a face. An extensive experimental investigation is conducted using publicly available BU-3DFE face databases covering face recognition under expression variations. The performance of the proposed method is compared with the performance of two benchmark approaches. The encouraging experimental results demonstrate that the proposed method can be used for 3D face recognition in single model databases.

Published in:

Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on

Date of Conference:

1-3 Dec. 2010