By Topic

Automated Detection of the Occurrence and Changes of Hot-Spots in Intro-subject FDG-PET Images from Combined PET-CT Scanners

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiyong Wang ; Biomed. & Multimedia Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia ; Feng, D.D. ; Yong Xia

Dual-modality PET-CT imaging has been prevalently used as an essential diagnostic tool for monitoring treatment response in malignant disease patients. However, evaluation of treatment outcomes in serial scans by visual inspecting multiple PET-CT volumes is time consuming and laborious. In this paper, we propose an automated algorithm to detect the occurrence and changes of hot-spots in intro-subject FDG-PET images from combined PET-CT scanners. In this algorithm, multiple CT images of the same subject are aligned by using an affine transformation, and the estimated transformation is then used to align the corresponding PET images into the same coordinate system. Hot-spots are identified using thresholding and region growing with parameters determined specifically for different body parts. The changes of the detected hot-spots over time are analysed and presented. Our results in 19 clinical PET-CT studies demonstrate that the proposed algorithm has a good performance.

Published in:

Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on

Date of Conference:

1-3 Dec. 2010