By Topic

CORER: A New Rule Generator Classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Basiri, J. ; Dept. of Electr. & Comput. Eng., Univ. of Tehran, Tehran, Iran ; Taghiyareh, F. ; Gazani, S.

Rule-based classifiers have been successfully applied in data mining applications. In this Paper, we have proposed a novel rule generator classifier called CORER (Colonial competitive Rule-based classifier) to improve the accuracy of data classification. The proposed classifier works based on CCA (Colonial Competitive Algorithm), a recently-developed evolutionary optimization algorithm. In order to approve the CORER capability in various domains, four different datasets from UCI machine learning database repository have been applied. To evaluate CORER performance, we compared our results with some other well-known classification methods, such as C4.5, CN.2, ID3 and naïve bayes which brings about superior results. Our findings lead us to believe that CORER may provide better performance for some critic domains which need more precise classifiers.

Published in:

Computational Science and Engineering (CSE), 2010 IEEE 13th International Conference on

Date of Conference:

11-13 Dec. 2010