By Topic

Research on Stage Classification of Flight Parameter Based on PTSVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Lu ; Sch. of Electron. & Inf. Eng., Beihang Univ., Beijing, China ; Kefei Mao

Flight Parameters stage classification is the premise of the fault diagnosis and trend forecast based on flight parameters. Stage classification belongs to the classification optimization problem of multi-attribute data through analysis the flight data. This paper carried out the research for the two-class classification based on the semi-supervised learning methods PTSVM (Progressive Transductive Support Vector Machines) and improved the PTSVM algorithm, which extends the application of PTSVM to the multi-class classification problem. The research and simulation work were carried out using the real flight parameters, and the comparison between the criterion of the flight parameters stage and the simulation results proved the validity of the research work for the flight parameters stage classification.

Published in:

Computational Science and Engineering (CSE), 2010 IEEE 13th International Conference on

Date of Conference:

11-13 Dec. 2010