By Topic

Outlier Detection with Innovative Explanation Facility over a Very Large Financial Database

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mejia-Lavalle, M. ; Inst. de Investig. Electr., Cuernavaca, Mexico

Outlier detection, or detection of exceptional data, is a key element for financial databases, because the necessity of fraud prevention. Here, we propose an efficient method for this task which includes an innovative end-user explanation facility. The best design was based on an unsupervised learning schema, which uses an adaptation of the Artificial Neural Network paradigms and the Expert System shells. In our method, the cluster that contains the smaller number of instances is considered as outlier data. The method provides an explanation to the end user about why this cluster is exceptional with regard to the data universe. The proposed method has been tested and compared successfully using well-known academic data, and a real and very large financial database.

Published in:

Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2010

Date of Conference:

Sept. 28 2010-Oct. 1 2010