By Topic

Derivation of Optimal Test Set for Detection of Multiple Missing-Gate Faults in Reversible Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dipak K. Kole ; Inf. Technol. Dept., Bengal Eng. & Sci. Univ., Shibpur, India ; Hafizur Rahaman ; Debesh K. Das ; Bhargab B. Bhattacharya

Logic synthesis of reversible circuits has received considerable attention in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. This article presents an efficient algorithm to derive an optimal test set (OTS) for detection of multiple missing-gate faults in a reversible circuit implemented with k-CNOT gates. It is shown that the OTS is sufficient to detect all single missing-gate faults (SMGFs) and all detectable repeated gate faults (RGFs). Experimental results on some benchmark circuits are also reported.

Published in:

2010 19th IEEE Asian Test Symposium

Date of Conference:

1-4 Dec. 2010