Cart (Loading....) | Create Account
Close category search window
 

Time-of-Flight PET Detector Based on Multi-Pixel Photon Counter and Its Challenges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang Lyong Kim ; GE Global Res., Niskayuna, NY, USA ; McDaniel, D.L. ; Ganin, A.

Geiger-mode multi-pixel APD is being recognized as the best alternative solid-state photo-sensor to vacuum PMT for various specific applications. Especially, its magnetic field immunity and high gain made it popular in MR/PET detector research. In this paper, we utilized its compactness, high gain and high photon detection efficiency in the design of TOF PET detector. In a typical block detector based on PMT, the full timing capability of both PMT and scintillator could not be achieved due to its light sharing for Anger logic scheme. Since Geiger-mode APD is a solid-state based technology, we can apply one-to-one coupling between a scintillator and the photo-sensor to optimize the signal-to-noise ratio. Also, the high photon detection efficiency of MPPC, Geiger mode APD from Hamamatsu, would help to improve timing resolution. So, we made a block detector based on a 4 × 4 array of 3 × 3 mm2 MPPC coupled to a 4 × 4 array of 3 × 3 × 25 mm3 LYSO crystals to evaluate its performance. We have achieved the average of 9% energy resolution and 314 ps coincidence timing resolution with very good uniformity. This block timing resolution showed no degradation in timing compared to individual single channel timing resolution as expected from one-to-one readout. On top of that, the result proves that the solid-state based photo-sensor can be used for TOF PET detector. During the development and setup of the detector, we recognized that a compact and low power electronics readout scheme is one of the biggest challenges, including its cost, for MPPC or other Geiger-mode APD to be used in products.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 1 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.