By Topic

RFID tag antenna based temperature sensing using shape memory polymer actuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rahul Bhattacharyya ; Massachusetts Institute of Technology, Cambridge, 02139, USA ; Claudio Di Leo ; Christian Floerkemeier ; Sanjay Sarma
more authors

Ubiquitous temperature monitoring is important to boost visibility in applications such as cold supply chain management. Current sensors monitor and log a time history of temperature data, but their cost limits the scale of deployment. In this paper, we propose an ultra-low cost temperature threshold sensor using the UHF RFID tag antenna as a sensing mechanism. Permanent changes are induced in the tag antenna electrical properties upon violation of a temperature threshold. This manifests itself in a change in backscatter power detected at the reader. We demonstrate how these changes are effected via shape memory polymer actuation. Experiments demonstrate that cheap, reliable temperature threshold sensors can be developed which are independent of the material of deployment, orientation of the sensor, which have a read range of over 3 m and which have a customizable critical temperature threshold.

Published in:

Sensors, 2010 IEEE

Date of Conference:

1-4 Nov. 2010