Cart (Loading....) | Create Account
Close category search window
 

The 3D-Kernel DM+V/W algorithm: Using wind information in three dimensional gas distribution modelling with a mobile robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reggente, M. ; AASS Res. Center, Orebro Univ., Örebro, Sweden ; Lilienthal, A.J.

In this paper we present a statistical method to build three-dimensional gas distribution maps from gas sensor and wind measurements obtained with a mobile robot in uncontrolled environments. The particular contribution of this paper is to introduce and evaluate an algorithm for 3D statistical gas distribution mapping, that takes into account airflow information. 3D-Kernel DM+V/W algorithm uses a multivariate Gaussian weighting function to model the information provided by the gas sensors and an ultrasonic anemometer. The proposed algorithm is evaluated with respect to the ability of the obtained models to predict unseen measurements. The results based on 15 trials with a mobile robot in an indoor environment show improvements in the model performance when using the 3D kernel DM+V/W algorithm. Moreover the model is able to adapt to the dynamical changes of the environment learning the hyper-parameter from the sensors readings.

Published in:

Sensors, 2010 IEEE

Date of Conference:

1-4 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.