Cart (Loading....) | Create Account
Close category search window
 

Investigation of spontaneously adsorbed globular protein films using high-frequency bulk acoustic wave resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ping Kao ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Chang, M.P. ; Allara, D. ; Tadigadapa, S.

In this paper we use micromachined, high-frequency, quartz bulk acoustic wave resonators to systematically study the physical and viscoelastic properties of spontaneously adsorbed globular protein films with molecular weights (MW) spanning two orders of magnitude. Specifically, changes in the frequency and the β-factor of the micromachined resonator array were studied as a function of concentration for three proteins, namely Human Serum albumin (HSA), Immunoglobulin G (IgG) and Human Fibrinogen (Fib) at the fundamental and third resonance modes. The results obtained were interpreted using equivalent electrical impedance models for the multilayer stack on the QCM surface. Discrete changes in the protein adsorption rate constant and the viscoelastic behavior was observed for all the three protein films. The spherical core-shell protein model is used to provide a simple explanation of the results. The work presented is a systematic and quantitative evaluation of the density, thickness, viscosity, and elastic modulus of the globular protein films, which was possible, due the use of the micromachined high frequency bulk acoustic wave resonators.

Published in:

Sensors, 2010 IEEE

Date of Conference:

1-4 Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.