Cart (Loading....) | Create Account
Close category search window

Distributed log information processing with Map-Reduce: A case study from raw data to final models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mingyue Luo ; Sch. of Electron. Eng., Beijing Univ. of Posts & Telecommun., Beijing, China ; Gang Liu

With the high development of Internet, e-commerce websites now routinely have to work with log datasets which are up to a few terabytes in size. How to remove messy data timely with low cost and find out useful information is a problem we have to face. The mining process involves several steps from pre-processing the raw data to establishing the final models. In this paper we describe our method to solve the problem with Map-Reduce. Hadoop is a Map-Reduce implementation develops open-source software for reliable, scalable, distributed computing. Several applications which we have proposed: data extracting, sum operation, join operation and clustering algorithm are applied on hadoop. We can apply them on data pre-processing and detect users with the same interests. In particular, we focus on clustering algorithms. A clustering algorithms which integrate SOM (Self-Organized Map) and fuzzy logic is combined with Map-Reduce and we call it MRSF here. With the help of hadoop cluster, large calculation of jobs with MRSF can be accommodated easily by just adding more nodes or computers to the cluster. From the experiment, we show that MRSF can scale well and efficiently process and analyze extremely large datasets.

Published in:

Information Theory and Information Security (ICITIS), 2010 IEEE International Conference on

Date of Conference:

17-19 Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.