Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandra, R. ; Lab. of Sensorimotor Res., Nat. Eye Inst., Bethesda, MD, USA ; Optican, L.M.

Determination of single-unit spike trains from multiunit recordings obtained during extracellular recording has been the focus of many studies over the last two decades. In multiunit recordings, superpositions can occur with high frequency if the firing rates of the neurons are high or correlated, making superposition resolution imperative for accurate spike train determination. In this work, a connectionist neural network (NN) was applied to the spike sorting challenge. A novel training scheme was developed which enabled the NN to resolve some superpositions using single-channel recordings. Simulated multiunit spike trains were constructed from templates and noise segments that were extracted from real extracellular recordings. The simulations were used to determine the performances of the NN and a simple matched template filter (MTF), which was used as a basis for comparison. The network performed as well as the MTF in identifying nonoverlapping spikes, and was significantly better in resolving superpositions and rejecting noise. An on-line, real-time implementation of the NN discriminator, using a high-speed digital signal processor mounted inside an IBM-PC, is now in use in six laboratories.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:44 ,  Issue: 5 )