By Topic

On Cell Layout-Performance Relationships in VeSFET-Based, High-Density Regular Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi-Wei Lin ; Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA ; Marek-Sadowska, M. ; Maly, W.P.

In this paper, we study circuits implemented using high-density arrays composed of vertical slit field effect transistors. This layout style could dramatically increase transistor density and, therefore, reduce fabrication cost. However, its geometrical restrictions, imposed by the super-regular transistor arrangement and strictly parallel metal tracks, pose new design challenges. Our experiments reveal that very dense cell-level interconnect pattern may be responsible for unnecessary 15% increase of the circuit level, critical path delays. We demonstrate that these extra delays can be avoided by constructing appropriate cell interconnect layouts and by more flexible usage of available metal layers for intra-cell routing. To balance the performance and metal layer usage, we propose a linear programming-based technique for critical net re-routing.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:30 ,  Issue: 2 )