By Topic

System-Oriented Harmonic-Balance Algorithms for Circuit-Level Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rizzoli, V. ; Dept. of Electron., Comput. Sci. & Syst., Univ. of Bologna, Bologna, Italy ; Masotti, Diego ; Mastri, F. ; Montanari, E.

This paper discusses a self-consistent set of modern computational concepts providing an effective approach to the circuit-level harmonic-balance (HB) simulation of nonlinear microwave systems of complex topology. The system is automatically split into the interconnection of a near-optimal number of nonlinear blocks at run time. The resulting structure is then exploited by the domain-partitioning concept. A block-wise constant spectrum is used rather than a common spectrum by considering for each block only the set of spectral lines that are relevant to its electrical function, which leads to a very significant reduction in the number of problem unknowns. System simulation under digitally modulated RF drive is reduced to a sequence of modified multitone HB analyses that are backward coupled through the envelope dynamics. Besides providing high numerical efficiency, this set of techniques opens the way to an effective co-simulation of RF and baseband transceiver sections.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:30 ,  Issue: 2 )